Characteristic-Based Schemes for Dispersive Waves I. The Method of Characteristics for Smooth Solutions

نویسندگان

  • Philip L. Roe
  • Mohit Arora
چکیده

In order to embark on the development of numerical schemes for stiff problems, we have studied a model of relaxing heat flow. To isolate those errors unavoidably associated with discretization, a method of characteristics is developed, containing three free parameters depending on the stiffness ratio. It is shown that such “decoupled” schemes do not take into account the interaction between the wave families and hence result in incorrect wave speeds. We also demonstrate that schemes can differ by up to two orders of magnitude in their rms errors even while maintaining secondorder accuracy. We show that n o method of characteristics solution can be better than second-order accurate. Next, we develop “coupled” schemes which account for the interactions, and here we obtain two additional free parameters, We demonstrate how coupling of the two wave families can be introduced in simple ways and how the results arc greatly enhanced by this coupling. Finally, numerical results for several decoupled and coupled schemes are presented, and we observe that dispersion relationships can be a very useful qualitative tool for analysis of numerical algorithms for dispersive waves.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some traveling wave solutions of soliton family

Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

On the Dynamic Characteristic of Thermoelastic Waves in Thermoelastic Plates with Thermal Relaxation Times

In this paper, analysis for the propagation of general anisotropic media of finite thickness with two thermal relaxation times is studied. Expression of displacements, temperature, thermal stresses, and thermal gradient for most general anisotropic thermoelastic plates of finite thickness are obtained in the analysis. The calculation is then carried forward for slightly more specialized case of...

متن کامل

Stability of Solitary Waves for a Nonlinearly Dispersive Equation

Solitary-wave solutions of a nonlinearly dispersive equation are considered. It is found that solitary waves are peaked or smooth waves, depending on the wave speed. The stability of the smooth solitary waves also depends on the wave speed. Orbital stability is proved for some wave speeds, while instability is proved for others.

متن کامل

Local discontinuous Galerkin methods for nonlinear dispersive equations

We develop local discontinuous Galerkin (DG) methods for solving nonlinear dispersive partial differential equations that have compactly supported traveling waves solutions, the so-called ‘‘compactons’’. The schemes we present extend the previous works of Yan and Shu on approximating solutions for linear dispersive equations and for certain KdV-type equations. We present two classes of DG metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005